1.-Introducción a los circuitos lógicos"http://geovanni-circuitoslogicos.blogspot.com/2010/10/introduccion-los-circuitos-logicos-el.html"
2.-CONCEPTOS BÁSICOS PERTENIENTES A LOS CIRCUITOS DE LÓGICA BINARIA "http://geovanni-circuitoslogicos.blogspot.com/2010/10/conceptos-basicos-pertenientes-los.html"
3.-¿CÓMO LOS INTERRUPTORES SE IMPLEMENTAN CON LOS TRANSISTORES?"http://geovanni-circuitoslogicos.blogspot.com/2010/10/como-los-interruptores-se-implementan.html"
4.-CIRCUITOS LOGICOS "http://geovanni-circuitoslogicos.blogspot.com/2010/10/circuitos-logicos.html"
5.-Tablas de Verdad "http://geovanni-circuitoslogicos.blogspot.com/2010/10/tablas-de-verdad.html"
6.-Gates Lógica y Redes" http://geovanni-circuitoslogicos.blogspot.com/2010/10/gates-logica-y-redes.html"
7.-Análisis de una red lógica "http://geovanni-circuitoslogicos.blogspot.com/2010/10/analisis-de-una-red-logica.html"
viernes, 15 de octubre de 2010
Introducción a los circuitos lógicos
El estudio de los circuitos de lógica está motivado principalmente por su uso en las computadoras digitales. Pero estos circuitos también forman la base de muchos otros sistemas digitales, donde se realizan operaciones aritméticas con números.
Por ejemplo, en una miríada de aplicaciones de control de las acciones están determinadas por un simpleoperaciones lógicas en la información de entrada, sin tener que hacer cálculos numéricos extensa.Los circuitos lógicos realizan operaciones en señales digitales y se implementan normalmente como circuitos electrónicos donde los valores de la señal se limita a un pocos valores discretos. En los circuitos de lógica binaria que sólo hay dosvalores, 0 y 1: En circuitos de lógica decimal hay 10 valores, de 0 a 9: Dado que cada valor de la señal es, naturalmente, representado por un dígito de circuitos, la lógica como se les conoce como circuitos digitales.
Por el contrario, existen analógicocircuitos donde las señales pueden asumir un rango continuo de valores entre un mínimo y máximo en los niveles.
viernes, 8 de octubre de 2010
CONCEPTOS BÁSICOS PERTENIENTES A LOS CIRCUITOS DE LÓGICA BINARIA
Variables y Funciones
El predominio de los circuitos binarios en los sistemas digitales es una consecuencia de su simplicidad,
El más simple elemento binario es un interruptor que tiene dos estados. Si un parámetro dado es controlado por una entrada variable x, entonces diremos que el interruptor está abierto, si x 0 y cerrada si x 1, como se muestraen la figura.
que resulta de limitar las señales de asumir sólo dos valores posibles.
El predominio de los circuitos binarios en los sistemas digitales es una consecuencia de su simplicidad,
El más simple elemento binario es un interruptor que tiene dos estados. Si un parámetro dado es controlado por una entrada variable x, entonces diremos que el interruptor está abierto, si x 0 y cerrada si x 1, como se muestraen la figura.
que resulta de limitar las señales de asumir sólo dos valores posibles.
Vamos a utilizar el símbolo gráfico de la figura para representar tales interruptores en los diagramas que siguen. Tengamos en cuenta que la entrada de control x se muestra explícitamente en el símbolo.
jueves, 7 de octubre de 2010
¿CÓMO LOS INTERRUPTORES SE IMPLEMENTAN CON LOS TRANSISTORES?encendido o apagado.
Considere una simple aplicación de un interruptor, cuando el interruptor se enciende una bombilla pequeña
Esta acción se realiza con el circuito de la figura
Una batería proporciona la fuente de alimentación. La bombilla se enciende cuando pasa la corriente suficiente a través de sus filamentos, que es una resistencia eléctrica. La corriente fluye cuando el interruptor está cerrado, es decir, cuandox 1. En este ejemplo la entrada que provoca cambios en el comportamiento del circuito es el x = 0 x = 1
La salida se define como el estado (o condición) de la luz L. Si la luz está prendida, vamos a decir que L D 1. Si la luz está apagada, diremos que L D 0. El uso de este convención, podemos describir el estado de la luz L en función de la variable de entrada x.Desde LD 1 si x 1 y LD 0 si x 0, podemos decir que L.x / D x
La salida se define como el estado (o condición) de la luz L. Si la luz está prendida, vamos a decir que L D 1. Si la luz está apagada, diremos que L D 0. El uso de este convención, podemos describir el estado de la luz L en función de la variable de entrada x.Desde LD 1 si x 1 y LD 0 si x 0, podemos decir que L.x / D x
Esta expresión lógica simple se describe la salida en función de la entrada. Decimos que Lx / x es una función lógica y que x es una variable de entrada.
se dice que la aplicación una lógica y funcionalidad.
El circuito de la Figura
se puede encontrar en una linterna ordinaria, donde el parámetro es un
En un circuito electrónico el interruptor se implementa como un transistory la luz puede ser un diodo emisor de luz (LED).
Un circuito electrónico es alimentado por una fuente de alimentación de un cierto voltaje, tal vez 5 voltios. Un lado de la fuente de alimentación conectado con la tierra, como se muestra en la Figura La conexión a tierra también puede ser utilizado como la vía de retorno para la corriente, para cerrar el ciclo, que se logra mediante la conexión de un ladode la luz a la tierra como se indica en la figura.
Por supuesto, la luz también se puede conectar
por un cable directamente a la parte de tierra de la fuente de alimentación, como en la figura
por un cable directamente a la parte de tierra de la fuente de alimentación, como en la figura
Consideremos ahora la posibilidad de utilizar dos interruptores para controlar el estado de la luz.
Vamos a x1 y x2 que las entradas de control de estos interruptores. Los interruptores pueden conectarse a en serie o en paralelo como se muestra en la Figura
Utilizando una conexión en serie, la luz se activada sólo si ambos interruptores están cerrados. Si bien el interruptor está abierto, la luz se apaga. Este comportamiento puede ser descrito por la expresión L.x1; x2 / x1 D? x2 donde L D 1 si x1 y x2 D 1 D 1; L D 0 en caso contrario:El símbolo "?" Se llama theANDoperator, y el circuito de la figura
miércoles, 6 de octubre de 2010
CIRCUITOS LOGICOS
La conexión en paralelo de dos interruptores se da en la figura
En este caso la luz estará en funcionamiento si 1 vez o 2 interruptor está cerrado. La luz también se enciende si ambos interruptores están cerrado. La luz se apaga solo si ambos interruptores están abiertos. Este comportamiento se puede afirmar que L.x1; x2 / D C x1 x2 donde LD 1 si x1 D 1 o 2 veces D 1, o si x1 x2 D D 1; L D 0 si x1 x2 D D 0:
El símbolo C se llama el operador OR, y el circuito de la figura
se dice que la aplicación una función lógica OR.En las expresiones anteriores de AND y OR, la salida L.x1; x2 / es una función lógica con variables de entrada x1 y x2. La AND y OR son dos funciones de la lógica más importantes funciones.
Junto con algunas otras funciones simples, que pueden ser utilizados como bloques de construcción
para la aplicación de todos los circuitos lógicos.La Figura ilustra cómo tres interruptores se puedenutiliza para controlar la luz de una manera más compleja. Esta conexión en serie-paralelo de los interruptores
se da cuenta de la función de la lógicaL.x1; x2;. X3 / D x1 x2 C /? x3La luz está encendida, si x3 D 1 y, al mismo tiempo, por lo menos uno de los 1 vez o 2 entradas es igual a 1.
Hasta ahora hemos asumido que algún tipo de acción positiva tiene lugar cuando un interruptor está cerrado, comocomo encender la luz. Es igualmente interesante y útil considerar la posibilidad de que un la acción positiva tiene lugar cuando un interruptor se abre. Supongamos que nos conectamos a la luz como muestra en la Figura
para la aplicación de todos los circuitos lógicos.La Figura ilustra cómo tres interruptores se puedenutiliza para controlar la luz de una manera más compleja. Esta conexión en serie-paralelo de los interruptores
se da cuenta de la función de la lógicaL.x1; x2;. X3 / D x1 x2 C /? x3La luz está encendida, si x3 D 1 y, al mismo tiempo, por lo menos uno de los 1 vez o 2 entradas es igual a 1.
Hasta ahora hemos asumido que algún tipo de acción positiva tiene lugar cuando un interruptor está cerrado, comocomo encender la luz. Es igualmente interesante y útil considerar la posibilidad de que un la acción positiva tiene lugar cuando un interruptor se abre. Supongamos que nos conectamos a la luz como muestra en la Figura
coloca después de la variable, o el signo de exclamación o la palabra no se coloca en frente de la variable para denotar la complementación. Así, los siguientes son equivalentes:x ancho x x0 D D NO xLa operación de complemento se puede aplicar a una sola variable o más complejos las operaciones. Por ejemplo, sif x1;. x2 / D C x1 x2 a continuación, el complemento de f esf x1;. x2 / D C x1 x2Esta expresión da el valor de la lógica 1 cuando no x1 x2 ni es igual a 1, es decir, cuando x1 x2 D D 0. Una vez más, las expresiones siguientes son equivalentes:x1 x2 C D. x1 x2 C / 0 DW.x1 x2 C / D NO. x1 x2 C /
En este caso el interruptor está conectado en paralelo con la luz, en lugar que en la serie. En consecuencia, un interruptor cerrado será un cortocircuito en la luz y evitar lacorriente fluya a través de él. Tengamos en cuenta que hemos incluido una resistencia adicional en este circuitopara asegurar que el interruptor cerrado, no un cortocircuito en la fuente de alimentación. La luz se activado cuando el interruptor se abre. Formalmente, podemos expresar este comportamiento funcional L.x / D x donde L D 1 si x 0;L D 0 si x 1
El valor de esta función es la inversa del valor de la variable de entrada. En lugar deutilizando el inverso palabra, es más común usar el término del complemento. Por lo tanto decimos que L.x / es un complemento de x en este ejemplo. Otro término de uso frecuente para el mismo operación es la operación NOT.
Hay varias notaciones de uso general para indicarla complementación. En la expresión anterior se coloca una barra superior en la parte superior de x. Este notación es probablemente el mejor desde el punto de vista visual. Sin embargo, cuando se complementa se necesitan en las expresiones que se escriben con un teclado de computadora, que a menudo se hace utilizando las herramientas CAD, no es práctico usar overbars. En su lugar, ya sea un apóstrofo es
En este caso el interruptor está conectado en paralelo con la luz, en lugar que en la serie. En consecuencia, un interruptor cerrado será un cortocircuito en la luz y evitar lacorriente fluya a través de él. Tengamos en cuenta que hemos incluido una resistencia adicional en este circuitopara asegurar que el interruptor cerrado, no un cortocircuito en la fuente de alimentación. La luz se activado cuando el interruptor se abre. Formalmente, podemos expresar este comportamiento funcional L.x / D x donde L D 1 si x 0;L D 0 si x 1
El valor de esta función es la inversa del valor de la variable de entrada. En lugar deutilizando el inverso palabra, es más común usar el término del complemento. Por lo tanto decimos que L.x / es un complemento de x en este ejemplo. Otro término de uso frecuente para el mismo operación es la operación NOT.
Hay varias notaciones de uso general para indicarla complementación. En la expresión anterior se coloca una barra superior en la parte superior de x. Este notación es probablemente el mejor desde el punto de vista visual. Sin embargo, cuando se complementa se necesitan en las expresiones que se escriben con un teclado de computadora, que a menudo se hace utilizando las herramientas CAD, no es práctico usar overbars. En su lugar, ya sea un apóstrofo es
martes, 5 de octubre de 2010
Tablas de Verdad
Hemos introducido las tres operaciones de la lógica más elemental-AND, OR y complemento por relacionándolos con circuitos sencillos construidos con interruptores. Este enfoque da a estas operaciones de una cierto "sentido físico". Las mismas operaciones también se pueden definir en forma de una tabla,llama una tabla de verdad, como se muestra en la Figura
Las dos primeras columnas (a la izquierda de la pesadalínea vertical) dan las cuatro combinaciones posibles de valores de la lógica que las variables X1 y X2 puede tener. La siguiente columna define la operación y para cada combinación de valores de x1 y x2, y la última columna define la operación OR. Debido a que con frecuencia necesitan se refieren a "las combinaciones de valores de la lógica" se aplica a algunas variables, vamos a adoptar un menor valoración plazo, para denotar una combinación de valores de la lógica.La tabla de verdad es una ayuda útil para representar la información relativa a las funciones lógicas.
lunes, 4 de octubre de 2010
Gates Lógica y Redes
Las tres operaciones básicas de la lógica introducidas en las secciones anteriores se puede utilizar para poner en prácticafunciones de la lógica de cualquier complejidad.
Una función compleja puede requerir muchos de estos básicos operaciones para su aplicación. Cada operación lógica puede aplicarse por vía electrónica con los transistores, lo que resulta en un elemento de circuito denominado puerta de la lógica.
La cifra indica que en el lado izquierdo como las puertas AND y OR son tablas cuando sólo hay unas pocas entradas. En el lado derecho se muestra cómo los símbolos sonaumentada para acomodar un mayor número de entradas. Le mostraremos como puertas lógicas son construido con los transistores.
En la jerga técnica de una red de puertas es a menudo llamado una red lógica o, simplemente, una lógica circuito.
Una función compleja puede requerir muchos de estos básicos operaciones para su aplicación. Cada operación lógica puede aplicarse por vía electrónica con los transistores, lo que resulta en un elemento de circuito denominado puerta de la lógica.
Una puerta lógica tiene uno o más entradas y una salida que es una función de sus entradas. A menudo es conveniente para describir un circuito lógico dibujando un diagrama del circuito, o esquema, que consiste en símbolos gráficos que representan las puertas lógicas. Los símbolos gráficos para las puertas AND, OR y NOT se muestra en la Figura
Un circuito más grande se lleva a cabo por una red de puertas. Por ejemplo, la lógica de la función en la Figura
puede ser implementado por la red en la Figura
La complejidad de un determinada red tiene un impacto directo en su costo. Porque siempre es conveniente reducirel costo de cualquier producto fabricado, es importante encontrar formas de aplicación de la lógica circuitos de la manera más económica posible. Veremos en breve que una función lógica dada puede poner en ejecución con una serie de redes diferentes.
Algunas de estas redes son más simples que otros, por lo tanto, la búsqueda de las soluciones que implican un costo mínimo es prudente.En la jerga técnica de una red de puertas es a menudo llamado una red lógica o, simplemente, una lógica circuito.
domingo, 3 de octubre de 2010
Análisis de una red lógica
Para una red lógica existente, debe ser posible determinar la función realizada por la red. Esta tarea se conoce como el proceso de análisis. La tarea de revertir el diseño de una nueva red que implementa un el comportamiento funcional deseado se conoce como el proceso de síntesis. El proceso de análisis es bastante sencillo y mucho más simple que el proceso de síntesis.La figura
muestra una red simple que consta de tres puertas. Para determinar su funcional de la conducta, podemos considerar lo que ocurre si aplicamos todas las señales de entrada posible que. Supongamos que empezamos haciendo x1 x2 D D 0. Esto obliga a la salida de la puerta NO que es igual a 1 y la salida de la puerta a 0. Debido a que una de las entradas a la O la puerta es 1, la salida de esta puerta será de 1. Por lo tanto, f D 1 si x1 x2 D D 0. Si dejamos quex1 y x2 D 0 D 1, entonces no hay cambio en el valor de f se llevará a cabo, porque las salidas de Y el NO y las puertas seguirán siendo 1 y 0, respectivamente. A continuación, si aplicamos x1 D 1 y x2 D 0, la salida de los cambios puerta NOT a 0 mientras que la salida de la puerta se mantiene en 0. Las dos entradas a la puerta O entonces igual a 0, por lo que el valor de f será 0.Por último, vamos a x1 x2 D D 1. Entonces la salida de la puerta y se va a 1, que a su vez provocaf para ser igual a 1. Nuestra explicación verbal puede resumirse en la forma de la tabla de verdad se muestra en la figura
sábado, 2 de octubre de 2010
Álgebra de Boole
En 1849 George Boole publicó un plan para la descripción algebraica de los procesos involucrados en el pensamiento lógico y el razonamiento. Posteriormente, este sistema y sus nuevas mejoras que se conoce como álgebra de Boole. Era casi 100 años después de que esta álgebra se encuentranaplicación en el sentido de la ingeniería. En la década de 1930 Claude Shannon mostró que Boolean álgebra proporciona un medio eficaz de los circuitos que describe construido con interruptores. La álgebra puede, por lo tanto, se utiliza para describir los circuitos de lógica. Vamos a demostrar que esta álgebra es una herramienta poderosa que puede ser utilizado para el diseño y análisis de circuitos lógicos.
viernes, 1 de octubre de 2010
Conclucion
Como se ha visto en los puntos anteriores, un computador es una serie de circuitos electrónicos que mediante el mecanismo de ejecución de instrucciones dan vida a una serie de operaciones que permiten, finalmente, ver lo que se ve al estar frente a la pantalla de uno de ellos y el poder interactuar, con ellos, de manera más o menos inteligente, dependiendo de lo que de ésta tenga el interactuante ya que se sabe que los computadores -como hoy se conocen- no tienen ni una pizca de inteligencia.
Básicamente un computador funciona mediante dos estados o valores conocidos como señales, por ejemplo, -1.5 volts y +4.0 volts. Estos voltajes tienen un significado lógico, con un valor se representa la existencia de una condición particular y el otro representa la ausencia de aquella condición.
Para aclarar los conceptos anteriores, considere algo en el mundo que sólo puede tomar dos estados o posiciones o características, por ejemplo, una puerta que sólo puede estar abierta o cerrada, o el día y la noche o lo que es más preciso si una luz está prendida o apagada. Los casos descritos, exageradamente, pueden tener esa condición dual que es posible representar por estas señales, por ejemplo la señal -1.5 volt podría representar a "la puerta abierta", "al día", "a la luz encendida" y en cambio la señal de +4.0 volt podría representar el otro estado de los hechos: "la puerta cerrada", "la noche", "la luz apagada".
Es decir, si se representa mediante estas señales el que una puerta esté cerrada o abierta, y se quiere saber cuál es la condición actual de la puerta, sólo se debe medir la señal: si ella tiene -1.5 volts entonces aquello significa que la puerta está abierta, en cambio, si ella estuviese cerrada, la señal que mediríamos sería la que corresponde a +4.0 volts.
Siempre se ha hablado de representar, esta acción es una de las piedras angulares de cualquier trabajo que se quiera hacer por medio de computadores. Para que se pueda representar es necesario que existan dos dominios, uno desde el cual se extraen los elementos que son usados para representar y, otro, de donde se distingue los elementos a representar. En el ejemplo anterior, el dominio que se usó para representar corresponde al dominio de las señales en el computador, en el cual existen dos elementos { -1.5 volts, +4.0 volts } y el dominio de los elementos a representar corresponde al de los estados de una puerta { "puerta abierta", "puerta cerrada" }.
Así la acción de representar es una que permite establecer relaciones entre estos dos dominios.
Básicamente un computador funciona mediante dos estados o valores conocidos como señales, por ejemplo, -1.5 volts y +4.0 volts. Estos voltajes tienen un significado lógico, con un valor se representa la existencia de una condición particular y el otro representa la ausencia de aquella condición.
Para aclarar los conceptos anteriores, considere algo en el mundo que sólo puede tomar dos estados o posiciones o características, por ejemplo, una puerta que sólo puede estar abierta o cerrada, o el día y la noche o lo que es más preciso si una luz está prendida o apagada. Los casos descritos, exageradamente, pueden tener esa condición dual que es posible representar por estas señales, por ejemplo la señal -1.5 volt podría representar a "la puerta abierta", "al día", "a la luz encendida" y en cambio la señal de +4.0 volt podría representar el otro estado de los hechos: "la puerta cerrada", "la noche", "la luz apagada".
Es decir, si se representa mediante estas señales el que una puerta esté cerrada o abierta, y se quiere saber cuál es la condición actual de la puerta, sólo se debe medir la señal: si ella tiene -1.5 volts entonces aquello significa que la puerta está abierta, en cambio, si ella estuviese cerrada, la señal que mediríamos sería la que corresponde a +4.0 volts.
Siempre se ha hablado de representar, esta acción es una de las piedras angulares de cualquier trabajo que se quiera hacer por medio de computadores. Para que se pueda representar es necesario que existan dos dominios, uno desde el cual se extraen los elementos que son usados para representar y, otro, de donde se distingue los elementos a representar. En el ejemplo anterior, el dominio que se usó para representar corresponde al dominio de las señales en el computador, en el cual existen dos elementos { -1.5 volts, +4.0 volts } y el dominio de los elementos a representar corresponde al de los estados de una puerta { "puerta abierta", "puerta cerrada" }.
Así la acción de representar es una que permite establecer relaciones entre estos dos dominios.
Suscribirse a:
Entradas (Atom)